НОВОСТИ   БИБЛИОТЕКА   ЭНЦИКЛОПЕДИЯ   КАРТА САЙТА   ССЫЛКИ   О САЙТЕ  






предыдущая главасодержаниеследующая глава

Применение в лингвистике логико-математических методов

1

Не подлежит сомнению, что использование в языкознании математических и логических методов ("точных методов") в значительной степени было стимулировано задачами прикладной лингвистики. Если и делались попытки приложения этих методов для решения проблем, непосредственно относящихся к области теоретического языкознания, например для разграничения явлений языка и речи*, то в перспективе (хотя, может быть, и не всегда ясной и близкой) имелись в виду все же потребности прикладной лингвистики. Между прочим, это означает, что оценка результатов подобного рода операций должна производиться с обязательным учетом целей прикладной лингвистики.

* (См.: G. Нerdan, Language as Choice and Chance, Groningen, 1956. )

Успех использования этих методов в совершенно новой области с общей точки зрения во многом обусловливается ответом на вопрос, в какой мере допустимо отождествление логически правильного языка с естественным языком, или, в другой формулировке, возможно ли сведение второго к первому*. Ответ на этот вопрос обычно дается в практической форме - посредством построения статистических, теоретико-информационных, теорети ко-множественных, теоретико-вероятностных и других математических моделей языка, не всегда, впрочем, ориентирующихся на конкретные задачи**. При построении подобного рода моделей их авторы нередко исходят из того допущения (очевидного с их точки зрения), что любое приложение формально-логического или математического аппарата к лингвистическому описанию и исследованию автоматически способствует их совершенствованию. По этому поводу хорошо сказал Уоррен Плят в своем обзоре работ по математической лингвистике: "Если рассматривать языковые модели как абстрактные системы дискретных элементов, то к ним можно применять различные математические понятия и методы, начиная от элементарной идеи числа и кончая сложными 'логическими, статистическими и теоретико-множественными операциями. Однако представление о том, что всякое привлечение чисел и математических операций для описания таких систем элементов делает утверждения более "точными" или более "научными", является абсолютно ошибочным. Нужно прежде всего показать, что новая система, полученная таким образом, является более удовлетворительной моделью" чем исходная система,- либо в том отношении, что она дает возможность формулировать более простые и более общие теоретические утверждения о некоторых аспектах моделируемой области, либо потому, что операции над моделью проливают свет на результаты соответствующих операций в моделируемой области. Одна из основных опасностей, связанных с построением математических моделей языка, в особенности количественных, состоит в том, что неразборчивое использование математического аппарата неизбежно приводит к бессмысленным и дезориентирующим результатам. Необходимо ясно понимать поэтому, что предпосылкой обогащения лингвистики с помощью математики является не только знание соответствующих областей математики, но и, кроме того, глубокое понимание сущности лингвистических проблем, на разрешение которых должны быть направлены математические методы"***.

* (Ср. замечание Г. Карри: "То, что существует тесная связь между математикой и логикой, с одной стороны, и языком - с другой, стало очевидным уже достаточно давно, а сейчас этот факт оказался в центре внимания в более строгом омысле..." (Н. В. Curry, Some Logical Aspects of Grammatical Structure, в материалах симпозиума "Structure of Language and its Mathematical Aspects", Providence, 1961, p. 57). )

** (Весьма своевременным в этой связи представляется замечание П. Гарвина (сделанное им в рецензии на кн. У. Вar-Hillel, Language and Information: Selected Essays on Their Theory and Application, London, 1964): "Большинство работ по теории обработки информации и приложений для ее целей вычислительных машин совершенно наивно и, бесспорно, не так полезно, как это было бы желательно". Касаясь негативной позиции Бар-Хиллела относительно эффективности логико-математических методов для автоматической обработки речевой информации, П. Гарвин полагает, что в ней все же содержатся позитивные элементы, так как эта позиция "заставит по крайней мере некоторых ученых относиться менее серьезно к своим теориям" (журнал "American Documentation", New York,' vol. 16, N 2, 1965, p. 127).)

*** (W. Рlath, Mathematical Linguistics. В кн.: "Trends in European and American Linguistics 1930-1960", Antwerp, 1961, pp. 22-2Э. )

С тем чтобы, по возможности, избежать указанной Уорреном Плятом опасности, необходимо не только располагать чисто эмпирическими попытками ответа на формулированный выше вопрос, но и стремиться к его общетеоретическому осмыслению. По сути дела, вопрос о сводимости естественного языка к той или иной логико-математической его модели или интерпретации есть основной вопрос теории прикладной лингвистики, необходимость создания которой ощущается все более настоятельно. При рассмотрении данного вопроса в первую очередь должна быть рассмотрена природа тех явлений, которые составляют предмет изучения, с одной стороны, логики и математики, а с другой, естественного языка, а затем также возможности тех методов, которыми работает каждая из этих наук. Уже из сопоставительного изучения этих моментов окажется возможным сделать некоторые общие выводы, которые могут быть небесполезными для всех тех, кому по необходимости приходится проводить свои исследования на пересечении перечисленных наук.

До известной степени этой цели служит симпозиум "Структура языка и его математические аспекты", проведенный Американским математическим обществом*. Но все они, как это явствует и из самого названия симпозиума, затрагивают только отдельные и в ряде случаев весьма частные аспекты интересующей нас проблемы. Хотя в своей совокупности они и создают достаточно аргументированные предпосылки для ответа на разбираемый нами вопрос, однако в них все же отсутствует четкое и недвусмысленное формулирование необходимых выводов. Во многом участники симпозиума продолжают линию эмпирических попыток разрешения вопроса, отнюдь не навязчиво предлагая свои опыты вниманию лингвистов в надежде, что они уже сами разберутся в том, насколько представленные ими гипотезы и решения окажутся пригодными для их целей.

* ("Structure of Language and its Mathematical Aspects". Proc. of the Soc. of Appl. Math., 12. Providence, 1961. )

Более подходящими поэтому в качестве отправной точки для осмысления результатов работы лингвистов, логиков и математиков в разбираемом нами плане являются две статьи, помещенные в сборнике "Естественный язык и вычислительная машина"*:М.Мэрона "Точка зрения логика на обработку лингвистических данных" и П. Гарвина и В. Кэраша "Лингвистика, обработка лингвистических данных и математика". В них излагаются рабочие возможности логики и математики, их отношение к эмпирическим наукам, способы решения задач и пр. Обратимся к рассмотрению поднятых этими статьями проблем с точки зрения того вопроса, который был сформулирован выше.

* ("Natural Language and the Computer", ed. bv P. Garvin, New York, 1963. )

2

Казалось бы, мы уже имеем абсолютно недвусмысленный ответ на наш вопрос. Так, например, Н. Д. Андреев и JI. Р. Зиндер пишут: "Математическое представление (модель) языков отнюдь не тождественно самому языку"*. Им следует и автор книги "Модели языка" И. И. Ревзин, который указывает, что в результате моделирования может явиться лишь "более или менее близкая аппроксимация данных конкретной действительности" **. Однако сказать так - значит еще ничего не сказать, так как остается нераскрытым, почему это так и следует ли все же обращаться к методу математического и логического моделирования, а если да, то в каких пределах и для какой цели.

* (H. Д. Андреев, Л. P. Зиндер, Основные проблемы прикладной лингвистики, "Вопросы языкознания"., 1959, № 4, стр. 18. )

** (И. И. Ревзин, Модели языка, М., 1962, стр. 8. Кстати говоря, выражение "близкая аппроксимация" - прямая тавтология: близкая приближенность. )

Для разрешения всех этих вопросов в качестве исходного пункта первоначально устанавливается, к каким наукам - индуктивным или дедуктивным - относятся лингвистика, логика и математика. Что касается последних двух наук, то их положение ясно - они, бесспорно, относятся к дедуктивным наукам, опирающимся в своей исследовательской методике на умозаключение. Лингвистику же традиционно определяют как эмпирическую науку, а это предполагает, что ее главной научной целью является описание фактов. Это значит, видимо, что лингвистика должна быть отнесена к области индуктивных наук. Это значит также, что, стремясь использовать в лингвистике формальный аппарат логики и математики, пытаются применить в индуктивной науке дедуктивные методы исследования.

Впрочем, в последние годы индуктивная природа науки о языке - лингвистики стала подвергаться косвенно или прямо сомнению. В наиболее резкой форме это сделал Л. Ельмслев. Правда, используемая им терминология весьма сбивчива и, в частности, характеризуется своеобразным и очень личным пониманием терминов "дедукция" и "индукция" (фактически он истолковывает их совершенно обратным образом). Однако излагаемые им основы его лингвистической теории не оставляют никаких сомнений относительно ее методической сущности. Так, он считает допустимым использование любых исходных операционных определений, что характерно для дедуктивных наук. И сам он в следующих выражениях характеризует свою теорию: "1. Теория в нашем смысле сама по себе независима от опыта. Сама по себе она ничего не говорит ни о возможности ее применения, ни об отношении к опытным данным. Она не включает постулата о существовании. Она представляет собой то, что было названо чисто дедуктивной системой в том смысле, что она одна может быть использована для исчисления возможностей, вытекающих из ее предпосылок. 2. С другой стороны, теория включает ряд предпосылок, о которых из предшествующего опыта известно, что они удовлетворяют условиям применения к некоторым опытным данным. Эти предпосылки наиболее общи и могут поэтому удовлетворять условиям применения к большому числу экспериментальных данных"*.

* ( "Пролегомены к теории языка". Сб. "Новое в лингвистике", вып. 1, М., 1960, стр. 274-275. )

Как явствует из этого высказывания, Л. Ельмслев стремится провести идею о двойственной методической природе объектов лингвистического исследования, с преимущественным акцентом на их дедуктивные признаки. Ему следует приписать и тот довольно двусмысленный способ ("с одной стороны... но с другой стороны..."), который вообще стал характерным для рассмотрения данного вопроса (и который дает возможность повернуть в любую из сторон). Идея методической двойственности лингвистики получила в последнее время широкое хождение и даже послужила теоретической основой для формулирования принципов и самого последнего по времени своего возникновения направления в науке о языке - лингвистики универсалий (универсалиализма). В "Меморандуме относительно лингвистических универсалий" говорится по этому поводу: "Изучение лингвистических универсалий ведет к целой серии эмпирических обобщений относительно языкового поведения - как еще требующих эксперимента, так и уже установленных. Эти обобщения представляют собой потенциальный материал для построения дедуктивной структуры научных законов. Впрочем, некоторые и, может быть, большинство из них пока располагают всего лишь статусом эмпирических обобщений, которые при современном состоянии наших знаний не представляется возможным соотнести с обобщениями или дедуктивно вывести из законов более общей значимости"*. С не меньшей определенностью выражается и Дж. Гринберг в своем предисловии к сборнику, посвященному лингвистическим универсалиям. Полемизируя с известными словами Л. Блумфильда о том, что "единственно правомерными обобщениями относительно языка являются индуктивные обобщения", он пишет: "Все же, по-видимому, считается общепринятым, что научный метод должен быть не только индуктивным, но и дедуктивным. Формулирование обобщений, полученных индуктивным исследованием, приводит к теоретическим гипотезам, на основе которых путем дедукции в свою очередь могут быть выведены дальнейшие обобщения. Эти последние затем должны быть подвергнуты эмпирической проверке"**.

* ( "Memorandum Concerning Language Universals", "Universals of Language", ed. by J. Greenberg, Cambridge, Mass., 1963, p. 262-263. )

** ("Universals of Language", p. IX. )

То обстоятельство, что история языкознания состоит не только из накопления фактов языка и их классификации, но и из смены точек зрения на сам язык, что неизбежно предполагает различие подходов к языковым фактам и даже различное их теоретическое истолкование, заставило и некоторых советских лингвистов также прийти к выводам о методической двойственности их науки. С. К. Шаумян предпочитает, правда, говорить при этом о методе гипотетико-дедуктивном и следующим образом излагает его особенности: "Гипотетико-дедуктивный метод представляет собой циклическую процедуру, которая начинается с фактов и кончается фактами. В этой процедуре различаются четыре фазы:

  1. фиксирование фактов, требующих объяснения;
  2. выдвижение гипотез для объяснения данных фактов;
  3. выведение из гипотез предсказаний о фактах, лежащих за пределами круга фактов, для объяснения которых были выдвинуты гипотезы;
  4. проверка фактов, которые предсказываются гипотезами, и определение вероятности гипотез.

Гипотетико-дедуктивный метод принципиально отличается от индуктивного метода, применяемого в таких областях знания, как, например, описательная ботаника или зоология"*. Метод С. К. Шаумяна фактически полностью повторяет метод лингвистики универсалий Дж. Гринберга. Единственное различие состоит в наименовании. Если, например, Дж. Гринберг говорит о сочетании индуктивного и дедуктивного методов, то С. К. Шаумян именует свой метод гипотетико-дедуктивным: обозначение явно непоследовательное для метода, который "начинается с фактов и кончается фактами".

* (С. К. Шаумян, Проблемы теоретической фонологии, М., 1962, стр. 18-19. Относительно гипотетико-дедуктивного метода см. также статью В. С. Швырева "Некоторые вопросы логико-методологического анализа отношения теоретического и эмпирического уровней научного знания" в сб. "Проблемы логики научного познания" (М., 1964), стр. 66-75 (3-й раздел статьи).)

Вопросом о том, куда следует отнести языкознание, задается и И. И. Ревзин. "По самой своей природе,- отвечает он на этот вопрос,- языковедение должно прежде всего пользоваться индуктивными методами, оно описывает конкретные речевые акты конкретных языков...

С другой стороны, наличие бесконечного множества речевых актов, изучаемых лингвистом, едва ли дает возможность сформулировать основные понятия науки о языке обобщением по индукции.

Отсюда следует, что лингвисты нуждаются не только в индуктивных, но и в дедуктивных методах исследования, чтобы получить систему общих знаний, помогающих осмыслить те данные, которые добываются при анализе конкретных языков...

В своей дедуктивной части языковедение, по-видимому, может быть построено так, как строится логика или математика, а именно: выделяется некоторое минимальное количество первичных, не определяемых терминов, а все остальные термины определяются через первичные. При этом должны быть четко сформулированы некоторые первичные утверждения о связи этих терминов между собой (аксиомы), и все остальные утверждения должны доказываться, т. е. сводиться к некоторым другим утверждениям"*.

* (И. И. Ревзин, Модели языка, М., 1962, стр. 7-8. )

Здесь метод дедукции, воплощающийся в логике и математике, выступает всего лишь как средство упорядочения "множества речевых актов" для целей создания "системы общих понятий". В прямом противоречии с этой задачей стоит, однако, изложение самого дедуктивного метода, рекомендуемого для использования в языкознании. Он полностью отмысливается и от актов и от фактов и за исходный момент построения системы общих лингвистических понятий принимает набор не определяемых и, по-видимому, абсолютно условных первичных терминов, через посредство которых определяются все последующие термины.

Это противоречие не случайно, оно кроется в самой природе рассматриваемых нами наук. Казалось бы, вывод, что при изучении лингвистических объектов допустимо сочетание индуктивного и дедуктивного методов, открывает двери для использования в лингвистике логических и математических методов, и конкретной реализацией этого вывода является создание многочисленных формально-логических и математических моделей языка. Но, как будет ясно из дальнейшего, такой упрощенный подход не может дать удовлетворительных результатов. Можно согласиться с тем, что в лингвистическом исследовании допустимо и даже необходимо сочетать дедуктивную и индуктивную методику. В конце концов, как писал В. Брёндаль, "индукция есть не что иное, как замаскированная дедукция, и за чистыми связями, установленными между наблюдаемыми явлениями, совершенно неизбежно предполагается реальность, специфический объект данной науки"*. Но это еще не значит, что в лингвистику следует безоговорочно и механически переносить формальный аппарат логики и математики без всякого учета "специфического объекта данной науки". Как справедливо замечает тот же И. И. Ревзин, "доказательства, полученные дедуктивным путем, сколь бы безукоризненными они ни были с логической точки зрения, еще ничего не говорят о свойствах реального языка, описываемого моделью"**. И он для определения действенности моделей рекомендует обратиться к практике, каковую представляет машинный перевод и "другие практические приложения языкознания".

* (B. Брёндаль, Структуральная лингвистика. Цитировано по книге: В. А. 3вегинцев, История языкознания XIX и XX вв. в очеркам и извлечениях, ч. II, М., 1965, стр. 95. )

** ( И. И. Ревзин, Модели языка, М., 1962, стр. 10. )

А практика прикладной лингвистики свидетельствует, что на использование математических и логических методов при изучении явлений языка накладываются очень строгие ограничения.

3

Логика дает пример наиболее последовательного использования дедуктивного метода. Математика во многом следует за логикой в этом отношении, и поэтому они могут рассматриваться совместно.

Разумеется, и логика, и математика в отношении своих методов и интерпретации целей не представляют гомогенных систем. Так, например, применительно к логике мы можем говорить о логике диалектической, формальной, математической и, в более узком смысле, о предметной, семантической, феноменологической, трансцедентальной, или конструктивной, комбинаторной, многозначной, модальной и пр. По необходимости, однако, придется отмыслиться от всех подобных подразделений и говорить только о самых общих чертах, свойственных логике и математике в целом, и главным образом о тех, которые с наибольшей отчетливостью демонстрируют дедуктивный характер методов этих наук.

Став на эту позицию, мы, следовательно, не будем обращаться к индуктивной логике. Отметим только, что выводы в индуктивной логике не определяются предпосылками - тем самым они не являются тавтологическими. Выводы в индуктивной логике находятся в прямой зависимости от фактов, а эти последние определяются объемом наших знаний - таким образом, они устанавливаются на вероятностной основе. Вероятность является основным методическим орудием индуктивной логики.

Дедуктивную логику наиболее полным образом представляют формальная и математическая логики, имеющие много общего. Дедуктивная логика - наука, изучающая человеческое мышление или мыслительные акты со стороны их структуры или формы, отвлекаясь от их конкретного содержания. Таким образом, дедуктивная логика стремится сформулировать законы и принципы, соблюдение которых является обязательным условием для достижения истинных результатов в процессе получения выводного знания. Основным методическим орудием дедуктивной логики является импликация. Выводное знание она получает без непосредственного обращения к опыту или к практике, посредством лишь применения законов логики. В процессе дедукции предпосылка обусловливает вывод: если предпосылка истинна, то и вывод должен быть истинным. Таким образом, вывод заключается уже в предпосылке, и цель дедукции - сделать очевидным то, что в скрытом состоянии заключено уже в предпосылке. Отсюда следует, что всякий полученный посредством дедукции вывод тавтологичен, т. е. логически является пустым, хотя с иных точек зрения, например в случаях применения формально-логического аппарата для целей других наук, может быть новым, неожиданным и оригинальным.

Аналогичное положение имеет место в математике - обоснованность доводов в ней полностью покоится на дедукции. При этом в математике, как правило, приемлема любая исходная точка зрения, любой подход к решению проблемы - лишь бы они удовлетворяли условиям математической дедукции. Математика располагает богатым набором такого рода "исходных точек зрения" и "подходов", которые исследователь альтернативно может использовать для решения своей задачи. Математическая проблематика часто переводима в разные эквивалентные формы, а каждая из них предполагает использование различных областей математической теории с целью решения проблемы. Таким образом, математик обладает фактически неограниченной свободой выбора предпосылок - он выбирает те из них, которые, с его точки зрения, таят в себе самые обещающие возможности для наиболее простого, небанального, изящного решения задачи. Его талант и опыт проявляются именно в удачном выборе предпосылок, тех "допустим, что..." или "если... то", которыми пестрят математические работы. Так же как и в логике, математические предпосылки - аксиомы или постулаты - обусловливают определения еще не определенных единиц.

Свобода выбора предпосылок в математике находится в прямой зависимости от того, что она оперирует нематериальными единицами, или объектами,- ее внимание направлено на отношения между ними. Математические объекты служат в качестве символов, выражающих структуру чистых отношений. Математическую систему можно, таким образом, рассматривать как набор формальных отношений, существующих лишь в силу констатаций этих отношений. Разумеется, в частности, в прикладных целях констатации отношений могут стремиться воплотить корреспонденции с внешней реальностью, но это никак не воздействует на сами констатации отношений - скорее, наоборот. Математики исследуют не "истинность" своих аксиом, хотя и требуют между ними взаимной согласованности. Исследование внутри математической системы есть исследование и установление связей, которые позволяют доказать, что факт теории А предполагает факт теории В. Следовательно, основной вопрос в математике не "что такое А и В?", а "предполагает ли А (или обусловливает ли) В?".

Совершенно иное положение в лингвистике. Она в основном ориентируется на первый из этих вопросов, и это не дает ей возможности оторваться от реальности; она, следовательно, оперирует не абстрактными, а конкретными единицами, хотя и стремится в ряде случаев к созданию абстрагированных объектов, вроде понятия фонемы или морфемы. Такое положение характерно не только для традиционной лингвистики, но в равной степени свойственно и новейшим ее направлениям, объединившимся под знаменем структурализма. Выше уже приводился ряд высказываний, которые, пытаясь использовать в науке о языке не только индуктивные, но и дедуктивные методы (или математические и логические методы), не смогли все же обойти необходимость обращения к реальному лингвистическому факту. В дополнение к ним можно привести еще одно, которое вносит полную ясность в рассматриваемый вопрос: "Лингвистический анализ,- пишет в указанной связи П. Гарвин,- в основном индуктивный процесс в том смысле, что он стремится установить список элементов или набор констатаций, исходя из лингвистических стимулов информантов или же из изучения текста. Он основывается на предположении, что в обоих этих источниках сведений окажется возможным распознать регулярно встречающиеся элементы различных типов и порядков сложности. Классификация этих типов и констатация их условий дистрибуции, полученные в результате анализа, образуют индуктивное описание языка"*.

* (P. Garvin, A Study of Inductive Method in Syntax, "Word", vol. 18 (1962), p. 107, )

В лингвистике, конечно, также можно использовать метод предпосылок, исходя из которых затем определяются частные объекты, факты или единицы языка. Но здесь мы сталкиваемся с двумя особенностями, которые вносят существенные коррективы в использование этого метода. В отличие от логики и математики в этом случае будет искаться "истинность" полученных таким способом определений, т. е. их соответствие данным опыта. Таким образом, устанавливается взаимозависимость предпосылки и выводного знания: предпосылка определяет вывод (определение частного лингвистического объекта в терминах предпосылки), но если вывод не соответствует данным опыта, то возникает необходимость коррективы самой предпосылки. Но такого рода коррективы предпосылки не имеют ничего общего с той переводимостью в эквивалентные формы, которая, как указывалось выше, допустима в математике, так как они обусловливаются не формальными соображениями, а данными опыта. Все сказанное дает основание заключить, что само понятие предпосылки и свобода ее выбора обладают в лингвистическом анализе специфичностью, с которой нельзя не считаться при использовании в языкознании дедуктивного метода.

Лингвисты не могут пользоваться с такой свободой методом "если" или "допустим", как математики. Свобода предпосылок у них очень строго ограничена. История науки о языке знает немало смен "точек зрения", или, иными словами, исходных предпосылок, которые были подсказаны открытием новых фактов, распространением на лингвистику общенаучных идей или даже формированием оригинальных теорий. Но для лингвиста во всех подобных случаях смена "если", или исходной предпосылки, есть смена всей научной конценции. Поэтому лингвист говорит не "если", а постулирует свое понимание предпосылки, т. е. фактически понимание предмета своего исследования, и, исходя из этого понимания, дает определение частных единиц языка, проверяя "истинность" этих определений данными опыта. Последнее же обстоятельство, в силу взаимозависимости предпосылки и вывода в лингвистике, служит средством проверки и правомерности самой предпосылки, стоящей в начале дедуктивного по форме лингвистического анализа. Так, если обращаться к конкретным примерам, в прошлом язык истолковывался как естественный организм (у Шлейхера), как индивидуальная психофизиологическая деятельность (у младограмматиков) и т. д. Исследовательская практика, основывающаяся на этих концепциях, показала их недостаточность. Ныне исходной предпосылкой лингвистического анализа является постулат, что язык есть система знаков*. Он подлежит такой же проверке опытом и практикой, как и любая другая концепция в науке о языке.

* (См.: Paul Garvin, The Definitional Model of Language. В кн.: "Natural Language and the Computer", ed. by P. L. Garvin, New York, 1964. )

Уже эти предварительные и самые общие соображения показывают, что дедуктивные методы вовсе не противопоказаны лингвистике, но применение их требует соблюдения специфических условий. Именно эти специфические условия накладывают определенные ограничения на механическое перенесение методов логики и математики в область лингвистики. Однако, если мы ограничимся такой общей констатацией, многое останется все еще неясным. Именно поэтому следует углубить разбираемый нами вопрос и для подкрепления потенциальных выводов обратиться к практике прикладной лингвистики, где с наибольшей отчетливостью проявляется правомерность предпосылок и соответствие опытным данным сделанных на их основе выводов.

4

Отношения между языком и логикой носят весьма своеобразный характер. Представители эмпирических наук, к которым относится и лингвистика, изучают тот или иной предмет или явление с целью описать или объяснить его. Полученные ими результаты они формулируют на языке, который именуется языком-объектом. Логик орудует доказательствами, умозаключениями, суждениями и пр., но они доступны ему только в языковой форме. Таким образом, получается, что логик на одну ступень находится дальше от реального мира, чем представители эмпирических наук. Его анализ направляется не непосредственно на реальный объект, изучаемый эмпирическими науками, а на их язык*. Иными словами, он исследует язык и формулирует полученные результаты на языке, который именуется метаязыком.

* ("Логический анализ научного знания,- пишут в этой связи П. В. Таванец и В. С. Швырев,- есть прежде всего и непосредственно анализ языка, в котором выражается это знание". См. статью "Логика научного познания" в сб. "Проблемы логики научного познания", М., 1964, стр. 161)

С логической точки зрения основной единицей языка является не знак и не обозначаемый им объект, а предложение, так как только в нем может развернуться логический процесс. Именно поэтому только предложение может быть истинным или ложным. А слова сами по себе не могут обладать этими качествами. Но прежде чем мы сможем установить, является ли предложение истинным или нет, нам необходимо констатировать, что оно имеет значение.

Понятия истинности и значения относятся к области семантики. Через посредство этих отношений и определяется истинность или ложность предложения: если предложение описывает объекты правильно, оно истинно, а если неправильно - нет. Но языковые выражения могут вступать в отношения иные, чем те, которые существуют между обозначаемыми ими объектами. Кроме того, предложения могут вступать в отношения с другими предложениями. Задача логика заключается в том, чтобы выяснить природу отношений между языковыми выражениями и предложениями и установить правила для определения того, выдерживается предписанная в данном случае процедура или нет. При решении последнего вопроса логик не обращается к объектам, описываемым предложением. Он интересуется лингвистической формой, а не ее содержанием, что, разумеется, не препятствует ее содержательной интерпретации, в результате чего возникает формализованный язык. Формализованный язык может быть представлен в виде абстрактной системы, например исчисления предикатов.

Итак, логик может в зависимости от задач исследования работать на двух уровнях - синтаксическом (логический синтаксис) и семантическом (логическая семантика). Рассмотрим сначала приложение первого из этих уровней к естественному языку.

Если логик, занятый изучением языковых форм и существующих между ними отношений, может оставаться в пределах синтаксического уровня, оперируя не содержательными терминами, то лингвист этого сделать не может. Все уровни естественного языка (за исключением, может быть, фонематического) содержательны и поэтому вне семантики немыслимы. И более того, естественный язык не существует вне прагматики, которая не может быть легко отслоена от него в силу той простой причины, что в речевом акте она постоянно трансполируется в семантику. Поэтому естественный язык - всегда интерпретация, и притом двуступенчатая, поскольку связана и с семантикой и с прагматикой*. И эта интерпретация не поддается пока никакой формализации.

* (Ср. замечания Нилса Бора о математическом языке, где "необходимая для объективного описания однозначность определений достигается при употреблении математических символов именно благодаря тому, что таким способом избегают ссылки на сознательный субъект, которыми пронизан повседневный язык" (Ниле Бор, Атомная физика и человеческое познание, М., 1961, стр. 96).)

Перейдем теперь ко второму уровню, когда исчислению посредством семантических правил приписывается интерпретация. И в этом случае мы получим образование, никак не сопоставимое с естественным языком. Правда, здесь мы имеем дело с содержательными терминами, но в логическом и естественном языке они строят свое отношение к "истинности" на совершенно иных основаниях. Как пишет А. Тарский, "истинное", "во всяком случае в его классической трактовке", является таковым в той мере, в какой оно "совпадает с действительностью"*. Но этот критерий "истинности" фактически применим лишь к естественным языкам, всегда ориентированным на действительность. По-иному обстоит дело в логической семантике. Семантический анализ опирается лишь на логическую интерпретацию системы и предполагает установление определенных правил, формулирующих условия истинности. Он предписывает следствие этим правилам, не отвечая на вопрос, в какой мере здесь имеет место "совпадение с действительностью". Кроме того, сама ориентированность на действительность осуществляется в естественном языке не непосредственно, а через человека, что опять-таки делает необходимым обращение к третьему уровню - прагматическому. "Переход на семантический уровень,- констатируют П. В. Таванец и В. С. Швырев,- не есть само по себе возвращение к живому языку в его конкретности, как может показаться на первый взгляд, благодаря тому, что смысловая функция языка как будто существо языка, как "непосредственной действительности мысли". На самом деле исходная схема семантики "язык - действительность" не дает еще конкретного образа языка как непосредственной действительности мысли по той простой причине, что язык связан с действительностью не сам по себе неким мистическим способом, а через человека, через его действия, его поведение. Поэтому, собственно говоря, конкретное представление о языке как носителе мысли может быть достигнуто лишь на уровне его прагматического анализа по схеме "язык - действия человека с языком и на основе языка -действительность"**.

* (A. Tarski, Grundlegung der Wissenschaftlichen Semantik. "Actes du Congres International de Philosophie Scientique", 1936. )

* (См. статью "Логика научного познания" в сб. "Проблемы логики научного познания" (М., 1964, стр. 16). )

Но и это еще не все. Касаясь рассматриваемого вопроса, В. М. Глушков пишет: "Живой человеческий язык может рассматриваться как формальный язык лишь после того, как будет сформулирована строгая система правил, позволяющая отличить выражения, допустимые в языке, от всех прочих выражений, то есть осмысленные предложения от бессмысленных"*. Разъясняя трудности, возникающие при формализации естественного языка, он далее указывает, что "никакой фиксированный формализованный язык не может быть адекватен живому человеческому языку, поскольку последний в отличие от первого непрерывно развивается и совершенствуется. Поэтому всякая формализация любого живого человеческого языка представляет собой лишь более или менее удачный его мгновенный слепок, утрачивающий сходство с оригиналом по мере развития последнего"**. Если бы все сводилось только к этому, то это было бы еще полбеды. В прикладной лингвистике отмысливаются от моментов развития языка, стремятся рассматривать его как совершенно стабильную систему и все же никак не удается добиться формализации естественного языка. Происходит это по весьма простой причине. Формальная система и естественный язык основывают свою действенность на полярно противоположных качествах. Всякая формальная система всегда тождественна самой себе. Именно это ее качество делает возможным выполнение ею своих функций во всех конкретных случаях ее приложения. А естественный язык - в плане своего содержания, своей семантики или, как в этих случаях принято говорить, в своем информативном плане - никогда не тождествен самому себе. Именно эта его способность делает возможным его функционирование во всех конкретных случаях своего применения. Оставаясь тем же самым языком, он в разных ситуациях всегда иной. При этом он не обладает ни эксплицитными, ни формативными правилами, ни правилами "истинности", ни трансформационными правилами для определения того, какое из потенциальных значений или оттенков значений получит данное слово в той или иной ситуации. Более того, почти любое слово естественного языка может получить значение, которое не зафиксировано никаким языком - оно может, возникнув, закрепиться в языке, но с таким же успехом, подобно беглому огоньку, вспыхнув, затеряться в лингвистическом "космосе" и погаснуть. И при всех этих качествах естественный язык оказывается изумительно совершенным орудием, которое позволяет добиться полного взаимопонимания относительно самых сложных понятий, и в любых ситуациях. Отчего это происходит?

* (В. М. Глушков, Мышление и кибернетика, "Вопросы философии", 1963, № 1, стр. 37-38. )

** ( В. М.. Глушков, Мышление и кибернетика, "Вопросы философии", 1963, № 1, стр. 38. )

Видимо, ответ на этот вопрос частично следует искать в одной мысли основоположника семиотики Ч. Пирса, которую он настойчиво повторяет во многих своих работах. Ее можно истолковать так. В современной лингвистике язык принято определять как систему знаков. Это исходная предпосылка для всего лингвистического анализа. Если это так, то язык не просто система знаков, а система взаимно интерпретирующих друг друга знаков, существующих в языке постольку, поскольку они интерпретированы в других знаках. Ч. Пирс формулирует это следующим образом: "Ни один знак не может функционировать в качестве знака, если он не интерпретирован в другом знаке. Следовательно, для знака абсолютно существенно, чтобы он воздействовал на другой знак"*. И в другом месте: "Все назначение знака состоит в том, что он будет интерпретирован в другом знаке"**. И пожалуй, наиболее важное: "Знак не есть знак, если только он не переводит себя в другой знак, в котором он получает более полное развитие"***.

* (Ch. Peirce, Collected Papers, Cambridge, Mass., vol. 8, §. 225. )

** (Tам ж e, §. 191. )

*** (Ch. Peirce, Collected Papers, Cambridge, Mass., vol. 5, § 594. )

Следовательно, естественный язык есть система знаков, которые посредством взаимной интерпретации получают возможность отвечать на все потребности человека в смысловом выражении. Но здесь необходима одна существенная оговорка. Ведь все потребности этого рода обусловливаются отношением человека к явлениям внешнего мира и общественной средой, в которой протекает его жизнь. В силу этого обстоятельства трансформационная семантика, если бы ее удалось создать, не может опираться лишь на правила взаимной интерпретации знаков, носить закрытый и конечный характер. Она оказывается производной от очень большого количества величин, всячески противящихся формализации *.

* ( P. Якобсон в данной связи констатирует: "Мы можем построить чисто лингвистическую семантику, если примем положение Пирса о том, что существенная особенность каждого языкового знака состоит в том, что он может быть переведен другим языковым знаком, более развернутым, более эксплицитным или, напротив, более эллиптичным знаком той же самой или другой языковой системы. Именно благодаря этой переводимости вскрываются те семантические инварианты, которые мы ищем в означающем. Таким образом, мы получаем возможность решать семантические проблемы языка также с помощью дистрибутивного анализа" (выступление на 1-м Международном симпозиуме "Знак в системе языка", Эрфурт, ГДР, 1959). Цитировано по книге: В. А. 3вегинцев, История языкознания XIX - XX веков в очерках и извлечениях, ч. 2, М., 1965, стр. 398.

Утверждение Р. Якобсона можно считать справедливым лишь при условии признания семантической системы естественного языка "закрытой" и независимой от тех величин, о которых говорится ниже).

В связи со сказанным важно рассмотреть особенности процедуры решения задач и само понятие решимости в логике и математике, с одной стороны, и в лингвистике - с другой.

Прежде чем в математике приступить к решению проблемы, она должна быть сформулирована в точных терминах - само это формулирование является предпосылкой успешного решения проблемы. При этом, как уже указывалось, математик может свободно трансформировать данное формулирование проблемы в эквивалентный вариант - математика располагает для этого и соответствующими средствами. Уже на этой первичной стадии исследовательской методики лингвистика существенно отличается от математики. При формулировании своих проблем лингвист располагает некоторым количеством наблюденных эмпирических данных, которым он не всегда может дать точную формулировку, но которые тем не менее он волей-неволей должен класть в основу своего исследования, уже в процессе самого этого исследования. Чтобы не идти далеко за примерами, можно сослаться на лингвистическое значение, которое составляет основу всей работы в области автоматической переработки речевой информации, но вместе с тем определяется весьма туманно и разноречиво. Именно это обстоятельство и заставляет исследователей в этой области постоянно менять свою стратегию.

Но вот исследование начато и достигнуто какое-то решение. Что это значит применительно к логике и математике и применительно к лингвистике? Логика, как указывалось выше, дает возможность эксплицитно представить заключения, имплицитно присутствующие в предпосылке, но она не располагает правилами, использование которых может гарантировать, что при этом будет добыто желаемое решение, так как она есть не средство достижения новых выводов, а всего лишь методика определения их правильности. Она - не волшебный ключ ко всем тайнам. Совершенно очевидно, что если бы логика обладала подобными правилами, то тогда бы не было и нерешенных проблем. Достаточно было бы приложить определенный набор логических правил, и мы бы автоматически получали готовый ответ на любой мучающий нас вопрос. В свете сказанного специфическое значение приобретает и понятие решимости проблемы или задачи.

В логике и в математике всякий конечный результат признается истинным, если в процессе доказательства не было нарушено никакое формальное правило. Так как при этом возможны разные пути доказательства, допустимо существование различных решений. Но все они могут быть подвержены проверке с точки зрения требования логики или математики. По-иному обстоит дело в лингвистике. Она не располагает аппаратом, с помощью которого можно проверить или доказать правильность полученных выводов. Соответственно с этим определяется и истинность достигнутых решений - она устанавливается не формальными правилами, а своим соответствием данным опыта. При этих условиях теоретически следовало бы ожидать единого конечного решения. Однако практически, как свидетельствуют об этом разноречивые лингвистические определения даже основных категорий языка, это не имеет места. Известный субъективизм оценок в этом случае всегда присутствует, и он до известной степени определяется объемом фактов (и, разумеется, их характером), находящихся в распоряжении исследователя. Отсюда следует, что "истинность" решения в лингвистике всегда дается в некотором приближении и имеет не детерминативный характер, а вероятностный.

В этих условиях очень важно правильность лингвистических определений и истолкований подвергнуть проверке на основе объективных критериев. Возможность такой проверки дает широкая область прикладной лингвистики, где естественному языку противостоит машина, представляющая в этом противопоставлении интересы логики и математики.

5

Для решения практических задач прикладной лингвистики используется цифровая вычислительная машина. Она способна воспринимать, хранить, передавать, перегруппировывать и выдавать информацию. Она интерпретирует и выполняет набор команд (программу команд), а также модицифирует их в процессе выполнения задания. Она в состоянии решать весьма сложные проблемы, но при этом весь процесс перехода от задания к решению должен быть исчерпывающе и непротиворечиво описан в терминах последовательности основных элементарных операций. Информация вводится в машину с помощью двузначного (бинарного) кода, или языка. Машина оперирует закодированными таким образом словами, соответствующими основным логическим связям или функциям исчисления высказываний или предикатов. Машина может решать сложные математические задачи именно в силу того, что сложные математические операции оказывается возможным свести к последовательности арифметических операций, а эти последние, в свою очередь к логическим операциям. Следовательно, цифровую вычислительную машину можно рассматривать как логическую машину.

Таким образом, какой бы сложности ни была задача, машина решает ее с помощью последовательности элементарных операций, программа которых должна быть сформулирована абсолютно недвусмысленно (непротиворечиво), точно, детально и исчерпывающе полно. Другими словами, она не должна выходить за те пределы, которые устанавливаются логическим исчислением высказываний, и, когда мы задаемся вопросом, может ли машина совладать с обработкой информации, заключенной в естественных языках, нам прежде всего нужно выяснить, в какой степени логическое исчисление высказываний является адекватной моделью для естественного языка.

Учитывая специфику цифровой вычислительной машины, описанную выше, первое, что необходимо сделать, чтобы машина "поняла" задание и начала обработку речевой информации в соответствии с этим заданием, заключается в переформулировке информации, содержащейся в естественном языке, на логический язык. Дело, следовательно, идет о переводе естественного языка на язык логического исчисления высказываний. При этом, как показал Бар-Хиллел*, приходится сталкиваться с такими трудностями, которые рисуют перспективы автоматической обработки в весьма мрачном свете, если не будет изменено все направление поисков решения данной проблемы. По меньшей мере придется считаться со следующими препятствиями, для преодоления которых мы пока не располагаем необходимыми средствами.

* ( Y. Вar-Hillel, A Demonstration of the Nonfeasibility of Fully Automatic High Quality Translation, "Advances in Computers:", vol. 1, New York, 1960, pp. 158-163. )

А. Логическое исчисление высказываний слишком бедно для того, чтобы можно было бы даже с далеким приближением произвести на него переформулировку естественного языка, невероятно сложного по своей семантической структуре, обладающего огромным объемом избыточных элементов и - самое главное - часто отличающегося такой неясностью и неопределенностью в выражении "смысла", что никакая двузначная логика не способна справиться с созданием искусственного двойника естественного языка*. Правда, логика, как указывалось, имеет дело лишь с лингвистической формой. Но поскольку дело идет об автоматической обработке информации, необходимо уметь различать и семантическую информацию, и если этого невозможно достичь с помощью имеющихся в нашем распоряжении логических средств, то откуда мы можем почерпнуть уверенность, что наш перевод естественного языка на логический правилен?

*( В статье Ч. Хоккета "Грамматика для слушающего" приводится много примеров такого рода сложностей в "естественном" понимании предложения, которые разрешаются последующими и далеко уходящими шагами анализа (Сh, Hockett, Grammar for the Hearer, "Structure of Language and its Mathematical Aspects", Providence, 1961, pp. 220-236). )

Б. Машина не может учитывать того, что Бар-Хиллел называет "общими предварительными данными информации" (general background of information), которые фактически остаются за пределами естественного языка и поэтому не подлежат переводу на логический язык. Лингвисты в этих случаях говорят о вне языковом контексте (frame of reference), который неприметным для нас, но очень решительным образом корректирует или даже подвергает полному переосмыслению все наши слова. Ведь даже такая простая фраза, как "Я вернусь засветло", для точного ее понимания и определения содержащегося в ней временного указания, как минимум, требует предварительного знания того, когда, где она была произнесена и в какое время года. Только подобного рода предварительная информация часто является единственным средством для уяснения тех внутрифразовых отношений, с которыми не в состоянии справиться ни исчисление высказываний, ни исчисление предикатов. Так, беря для примера два промелькнувших в газетах предложения:

Аспирант университета из города Курска;

Заслуженный рационализатор Сибири,-

мы видим, что каждое из них может быть истолковано двояким образом. Если придерживаться лишь формально-грамматических признаков, то первое предложение с одинаковым успехом можно понять и как "Аспирант из университета, расположенного в городе Курске" и как "Аспирант университета, проживающий в городе Курске (или происходящий из города Курска)". А второе предложение может быть трактовано и как "Заслуженный рационализатор, полем деятельности которого является Сибирь" и как "Заслуженный рационализатор, являющийся жителем Сибири". И только предварительные и никак не выраженные в предложениях знания (предварительная информация), констатирующие, что в городе Курске нет университета и что "заслуженный рационализатор" есть почетное звание, присваиваемое в Советском Союзе отдельными административными округами, дают возможность правильного понимания этих предложений. Если внимательно приглядеться, то почти за каждой фразой разговорного языка стоит весьма основательная и разветвленная предварительная информация, само собой разумеющаяся для человека, но лежащая за пределами "разумения" машины, которая не знает ни рода, ни племени.

В. Машина не может делать внутритекстовые смысловые заключения, распространяющиеся на несколько предложений (а иногда даже намеренно на целый рассказ, чтобы до конца не раскрыть его персонажа или сюжетного хода). На это обстоятельство обратил внимание голландский лингвист А. Рейхлинг*, иллюстрируя свою мысль следующим примером. Допустим, что мы читаем некое повествование, которое начинается предложением: "Я играю с моим братом". Если мы на этом остановимся, то в нашем распоряжении не будет никаких данных для выяснения того, как же следует понимать эту фразу, о какой игре здесь идет речь. Ведь можно играть на деньги (в карты и пр.), на музыкальном инструменте, в театре или в кино, в игрушки, в футбол, играть для забавы, играть человеком и его судьбой и т. д. Но вот мы читаем дальше: "Я сказал это, когда Вильгельм однажды встретился мне в баре". Теперь уже с большей вероятностью мы можем заключить, что, по-видимому, речь идет об игре на деньги. Но все же существуют и другие возможности. Далее следует: "Мой брат подошел к столу, и кости были брошены". Теперь ясно, о какой игре идет речь, хотя нигде в тексте точного указания на действительный смысл слова "игра" не было дано. Мы догадались о нем по совокупности тех внешних примет, которые даны в тексте в разных предложениях. Эти приметы следуют здесь одна вслед за другой, но они в письменном повествовании могут и значительно отстоять друг от друга. Человек может выбрать их из широкого языкового контекста (в данном случае мы имеем дело с ним), сопоставить и затем уже сделать соответствующее умозаключение. Машина же лишена этой возможности.

* (На коллоквиуме, организованном в 1961 г. Stichting Studiecentrum voor Administrative Automatisering. Имеется и немецкий перевод доклада: A. Rеiсhling, Moglichkeiten und Grenzen der mechanischen Ubersetzung, aus der Sicht des Linguisten, "Beitrage zur Sprachkunde und Informationsverarbeitung", Heft 1, Wifcn, 1963. )

Но, может быть, этого и не надо ей? И действительно, при машинном переводе данных предложений на немецкий или французский особых трудностей не возникает (но трудности, конечно, возникнут при переводе других предложений). При переводе на немецкий мы можем употребить буквализм: Ich spile mit meinem Bruder. Точно так же и во французском мы можем начать: Je joue avec... Уже при переводе на английский возникают сложности грамматического порядка, так как в приведенном тексте нет никаких указаний на то, какую форму должна выбрать машина: 1. I am play ing with my brother, 2. I play with my brother или 3. I'll play with my brother? И уж совсем скверно получается при переводе на испанский язык, так как машине придется выбирать по меньшей мере между тремя глаголами: jugar, tocar или trabajar.

Тут логический язык беспомощен.

Г. Машина фактически имеет дело с речью (или, точнее, с речевыми отрезками) - в ее письменной и устной форме. Каждая из этих форм речи имеет свою систему прагматических элементов, способных к тому же переходить в семантические (а правила такого перехода и не изучены и во многом произвольны). Так, например, устная речь обладает такой супрасегментной надстройкой, как интонация. Интонацию ныне представляется возможным классифицировать по функциональным типам и выделять вопросительную, повествовательную и прочие интонации. Однако совершенно бесспорно, что интонация существует не автономно от предложений; она, конечно, взаимодействует со смыслом, заключенным в них. В подтверждение этого утверждения достаточно сослаться на риторический вопрос, который является вопросом только по внешней своей структуре, но не является вопросом по значению: он не требует ответа со стороны слушающих. Так возникает новый вид трудностей, с которыми логический язык не имеет возможности справиться.

Д. Методика автоматической обработки речевой информации (и, в частности, машинного перевода) исходит из предположения, что любое предложение, да и язык в целом, "разбирается" на некоторое количество элементарных смысловых единиц (слов), из которых затем можно по определенным правилам "собирать" заданные предложения. Следствием этого предположения является другое, в соответствии с которым смысл предложения представляет арифметическую сумму смыслов составляющих его слов. Здесь за образец берется математика, где самые сложные операции, которые проделывает вычислительная машина, в конечном счете сводятся к предельно элементарным. Но в языке мы сталкиваемся с почти полностью противоположной картиной. Дело не только в том, что в разных языках предложения в смысловом отношении по-разному "разбираются" на части. Например:

 Девушка идет. 
 Девушка стоит.
 Шляпа идет девушке. 

 Das Madchen geht. 
 Das Madchen steht.
 Der Hut steht dem Madchen (буквально: Шляпа стоит девушке).

Дело также и в том, что даже в пределах одного языка чаще всего не наблюдается арифметически правильных отношений между смыслом предложения и смыслами (значениями) составляющих его слов. По этому поводу Э. Бенвенист пишет: "Предложение реализуется посредством слов. Но слова-это не просто отрезки предложения. Предложение- целое, не сводящееся к сумме его частей, присущий целому смысл распределяется на всю совокупность компонентов"*. Речь при этом идет не об идиоматических выражениях (типа: "делать спустя рукава", "втирать кому-либо очки" и пр.), а о самых обычных предложениях. Возьмем элементарный пример:

Ждите! - пойду я в театр.

Можно ли утверждать, что смысл этого предложения представляет собой арифметическую сумму значений слов: ждать, пойти, театр, я, в? Исходя из такого арифметического представления, мы должны были бы ожидать, что любая комбинация этих слов, представленная в грамматически правильном предложении, сохранит тот же самый смысл - ведь от перестановки места слагаемых сумма слагаемых не изменяется. Но вот попробуем лишь слегка модифицировать данное предложение:

Я пойду в театр - ждите!

Мы видим, что по своему смыслу это второе предложение значительно отличается от первого.

* (Е. Benveniste, Les niveaux de Г analyse linguistique, "Preprints of Papers for the Ninth International Congress of Linguists", Cambridge, Mass., 1962, p. 497 )

Это - из числа предельно элементарных примеров, а если обратимся к более сложным, то бессилие любых трансформационных правил, которым должны быть подведомственны такие случаи, станет особенно очевидным. Иначе и быть не может: ведь предложение представляет собой последовательность моносем, а моносема (см. раздел "Система семантических исследований"), как синтаксическая конфигурация, больше слова. Это обстоятельство приводит к тому, что предложение, как последовательность моносем, есть последовательность взаимоопределяющихся элементов, связанных друг с другом в смысловом отношении в неразрывную цепочку, которую схематически и в сугубо обобщенном виде можно изобразить следующим образом*:


* ( См. "Приложение" в конце книги. )

Именно в силу указанных особенностей предложений между последними и словами имеется качественное различие. Если слова можно определять как знаки, то предложения, бесспорно, выходят за пределы знакового уровня.

Вопрос о "разложимости" языка и предложений упирается в более общий. Есть структуры, способные выполнять свои функции лишь в своем сложном составе. При попытке разложить их на более мелкие части или свести к более элементарным структурам они фактически распадаются, перестают существовать как таковые, утрачивают качества, свойственные им в их сложном составе. Таков язык. Это понимал В. Гумбольдт (подходя, правда, к данному вопросу несколько с иной стороны), когда писал: "Для того чтобы человек мог понять хотя бы одно-единственное слово не просто как душевное побуждение (т. е. рефлекторно.- В. З.), а как членораздельный звук, обозначающий понятие, весь язык полностью и во всех своих связях-уже должен быть заложен в нем. В языке нет ничего единичного, каждый отдельный его элемент проявляет себя лишь как часть целого"*. Переведя это суждение В. Гумбольдта на язык современной науки, мы получаем следующую формулировку, принадлежащую М. Таубе: "...нетрудно понять, что язык как система содержательных символов, устных или письменных, не есть формальная система и не может быть сведен к ней без разрушения его истинной природы... Когда язык формализован, он перестает быть языком и становится кодом"**.

* (В. Гумбольдт, О сравнительном изучении языков применительно к различным эпохам их развития. Цитировано по книге: В. А. Звегинцев, История языкознания XIX - XX веков в очерках и извлечениях, ч. I, М., 1964, стр. 79. )

** (М. Таубе, Вычислительные машины и здравый смысл, М.* 1964, стр. 18. )

Но если даже удастся справиться с перечисленными языковыми трудностями, существуют еще препятствия собственно логического порядка - речь в данном случае идет о так называемых "правилах разрешения" (decision rules). Ведь если мы хотим быть уверенными, что машина будет действовать логически безукоризненно, мы должны снабдить ее набором правил, следуя которым она и сможет последовательно пройти путь от исходной информации к потребным выводам. Применительно к логическим исчислениям высказываний мы располагаем такими правилами, но для более сложных логик таких правил нет, и, более того, есть основания полагать, что такие правила нельзя и найти. Если же ориентироваться на те правила, которые имеются уже в нашем распоряжении, то использование их сделает процесс разрешения настолько сложным (даже при применении усовершенствованных вычислительных машин), что игра не будет стоить свеч*.

* (Чтобы показать, какую работу приходится делать вычислительной машине, работающей методом последовательных шагов, А. Л. Сэмюэль обращается к примеру игры в шашки. Он пишет: "Чтобы заставить вычислительную машину играть в шашки, мы прежде всего должны изобразить положение шашек на доске по способу, который вычислительная машина могла бы запомнить. Затем последствия каждого из имеющихся ходов должны анализироваться заглядыванием в будущее, как это в общем делал бы человек, рассматривая каждый начальный ход по очереди, затем - все возможные ответные ходы противника, затем для каждого из них - все контрответы и т. д. Даже если мысленно перенестись в будущее, к наибыстрейшей возможной машине, подчиненной лишь таким ограничениям, как размеры вселенной, молекулярная природа материи и конечная скорость света, то и такой вычислительной машине потребовались бы многие столетия, а может быть, и более длительный срок, чем даже возраст вселенной, чтобы сделать свой первый ход" (А. Л. Сэмюэль, Искусственный разум: прогресс и проблемы. Приложение к книге: М. Таубе, Вычислительные машины и здравый смысл, М., 1964* стр. 140-141).)

В таком виде рисуется проблема применения логических и математических методов в науке о языке на основании данных прикладной лингвистики. Каковы же выводы? Выводы уже формулировались выше - логический анализ допускает сочетание индуктивных методов с дедуктивными, но, когда мы говорим об использовании в лингвистике дедуктивных методов, не следует все сводить к слепому подчинению лингвистического исследования логико-математическим методам. Естественный язык восстает против такого насилия. И практика прикладной лингвистики подтверждает эти выводы, устанавливая, что между формализованным логическим языком и естественным языком такие различия, что достаточно полный (в информативном плане) перевод второго в первый невозможен. Значит ли это, что в лингвистике (и, в частности, прикладной) следует отказаться от использования логико-математических методов? Конечно, нет. Но только не следует переоценивать их возможностей. Пока они довольно скромны. И чтобы не быть тут голословными, обратимся к свидетельству математиков и логиков, которым в практике своей работы приходится применять свои знания к исследованию естественного языка.

Вот что говорит математик: "Помощь математики в изучении естественного языка еще далека от очевидности... Прежде чем мы можем думать об использовании математики для исчисления, необходимо определить границы и функции лингвистических единиц... Это - вне математическая задача, она является частью индуктивных методов в лингвистике.

Выяснилось, что математика не заменяет эмпирической методологии, хотя некоторые лингвисты и стремятся к этому. Наоборот, только после того, как единицы и отношения естественного языка будут установлены индуктивным методом и соответствующим образом подтверждены (верифицированы), будут созданы необходимые условия для реалистического применения математики к естественному языку. При этом математики либо обнаружат, что они имеют дело с новой манифестацией того, что по своей сущности уже знакомо им, либо получат стимул для математического мышления нового порядка"*.

* (P. Garvin and W. Karush, Linguistics - data Processing and Mathematics, "Natural Language and the Computer", New York, 1963, pp. 368-369. См. также в той же книге статью: W. Ksrush, The Use of Mathematics in the Behavioral Sciencess, pp. 64-83.)

А вот что говорит логик: "Перспективы автоматической обработки речевой информации очень хороши, но роль логики в этой области ограничена. Впрочем, как орудие лингвистического анализа, не как набор правил для выведения заключений, она дает реальные обещания"*. И далее он устанавливает, какая исследовательская стратегия при этом более предпочтительна: "Проблемы следует решать не посредством непреклонного следования набору правил, установленных логиком, а скорее с помощью эвристической техники**... Следует предпочитать эмпирический индуктивный подход к автоматической обработке речевой информации, при котором ищутся грубые правила для решения информационных проблем. Не следует пытаться переводить обычный язык на логический с целью последующей обработки его, но, скорее, искать правила эвристического типа, которые позволят совладеть с естественным языком. Следует прекратить поиски абсолютной достоверности и обратиться к приближенным методам, которые, с накоплением опыта, будут уточнены и усовершенствованы. Мы предпочитаем рассматривать апроксимации таким же образом, каким рассматривают теорию в науке, где видоизменения и усовершенствования делаются на основе данных, полученных в результате эксперимента"***.

* (М. Maron, A Logician's View of Language - data Processing, указанная книга, стр. 144. )

** (Достаточно ясное представление об эвристической методике дает A. Л. Сэмюэль. Противопоставляя ее формальной методике логической процедуры, он пишет, что вместо нее можно применять методику, "где несколько более или менее произвольно выбранных процедур исследуются довольно неполным образом и каждая дает некоторый ключ для ориентировки, на правильном ли мы пути* пока, наконец, через серию догадок мы не придем к формулировке удовлетворительного доказательства. В обоих приведенных случаях мы можем иногда прийти к правильному или хотя бы к очень хорошему ответу за изумительно короткий отрезок времени, но вместе с тем отсутствует уверенность в том, что мы вообще когда-либо получим решение, как и уверенность, что представляющееся нам решение наилучшее. Такой метод решения задач получил название "эвристической" процедуры в отличие от применения "алгоритма"... Эвристическое решение задач, когда оно успешно, должно, конечно, расцениваться как более высокая умственная активность, чем решение задач посредством более или менее автоматической процедуры". Цитировано по русскому переводу: A. Л. Сэмюэль, Искусственный разум: прогресс и проблемы. Приложение к книге: М. Таубе, Вычислительные машины и здравый смысл, М., 1964, стр. 136-137.)

*** (М. Мarоn, указ. соч., стр. 143-144, )

Таковы общие выводы. Они говорят о том, что в совместной работе с логиками и математиками лингвистам принадлежит ведущая роль. В обязанность лингвистов входит подготовка языкового материала таким образом, чтобы сделать его доступным обработке логико-математическими методами. Именно в этом направлении следует искать реалистического сочетания в лингвистике индуктивных методов с дедуктивными. А когда при решении задач прикладной лингвистики речь идет об эвристических гипотезах, то они в первую очередь должны исходить от лингвиста, так как он ближе к языку и по своей должности обязан лучше знать и понимать его.

предыдущая главасодержаниеследующая глава










© GENLING.RU, 2001-2021
При использовании материалов сайта активная ссылка обязательна:
http://genling.ru/ 'Общее языкознание'
Рейтинг@Mail.ru